A $$C^m$$ Lusin approximation theorem for horizontal curves in the Heisenberg group

نویسندگان

چکیده

We prove a $$C^m$$ Lusin approximation theorem for horizontal curves in the Heisenberg group. This states that every absolutely continuous curve whose velocity is $$m-1$$ times $$L^1$$ differentiable almost everywhere coincides with except on set of small measure. Conversely, we show result no longer holds if differentiability replaced by approximate differentiability. shows our optimal and highlights differences between Euclidean settings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S Theorem for the Heisenberg Group

If an integrable function f on the Heisenberg group is supported on the set B × R where B ⊂ Cn is compact and the group Fourier transform f̂(λ) is a finite rank operator for all λ ∈ R \ {0}, then f ≡ 0.

متن کامل

Benedicks’ Theorem for the Heisenberg Group

If an integrable function f on the Heisenberg group is supported on the set B × R where B ⊂ Cn is compact and the group Fourier transform f̂(λ) is a finite rank operator for all λ ∈ R \ {0}, then f ≡ 0.

متن کامل

The Heisenberg group and Pansu’s Theorem

The goal of these notes is to introduce the reader to the Heisenberg group with its CarnotCarathéodory metric and to Pansu’s differentiation theorem. As they are very similar, we will first study Rademacher’s theorem about Lipschitz maps and then see how the same technique can be applied in the more complex setting of the Heisenberg group.

متن کامل

Smooth Approximation for Intrinsic Lipschitz Functions in the Heisenberg Group

We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the L∞−norm of its intrinsic gradient.

متن کامل

A Quantitative Lusin Theorem for Functions in BV

We extend to the BV case a measure theoretic lemma previously proved by DiBenedetto, Gianazza and Vespri ([1]) in W 1,1 loc . It states that if the set where u is positive occupies a sizable portion of a open set E then the set where u is positive clusters about at least one point of E. In this note we follow the proof given in the Appendix of [3] so we are able to use only a 1−dimensional Poin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2021

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-021-01923-9